
Topics in Intelligent Computing and Industry Design (ICID) 1(2) (2017) 27-29

Cite The Article: Teng Haikun, Liu Xinsheng, Wang Shiying (2017). Research And Application Of Rtsj -Based Embedded System Api,
Topics in Intelligent Computing and Industry Design, 1(2) :27-29.

 ARTICLE DETAILS

 Article History:

Received 02 october 2017
Accepted 06 october 2017
Available online 11 november 2017

Keywords:

RTSJ, API, concurrent real-time
calculation structure, Java
Processor

ABSTRACT

This paper describes a RTSJ-based application program interface which aims to provide advanced concurrent real-
time calculation structure, facilitating real-time embedded system development. Further, development and
optimization (the time/footprint requirement) of real-time Java applications to a specific Java processor are carried
out. The use of the proposed API is illustrated in the paper by means of a case study that implements a crane control
system. This case study highlights the benefits and advantages of the proposed API.

1. Introduction

With the rapid development and the wide application of computer
technology, network communication technology and the micro-electronics
technology, the real-time embedded systems (RTES) has deep into every
field of scientific research and social life. The conventional wisdom is that
real-time embedded systems generally use outdated or obscure languages
such as C/C + +, assembly language, etc. These development means
complicated programming and disadvantages such as low efficiency, easy
to get wrong, and lack of security has become the development of
embedded system, and a new generation of real-time embedded systems
look forward to more new features, which greatly increased the complexity
of the embedded system, so we need new development language and
means to promote the development and application of real-time
embedded systems. Fortunately, the Java technology to make up for the
characteristics of the above shortcomings, and become more and more get
the favour of embedded programming, Java real-time specification (RTSJ,
also known as the Java specification application (JSR - 001) is the best
example, real-time Java provides real-time programmers with a designed
for productivity, the mainstream of modern language [1-2].

Java real-time specification is real-time Java (RTSJ) panel (RTJEG) of Java
extension specification in real time, make up for the defects of the Java
language in real-time applications, it provides the creation, validation,
analysis, implementation and management of real-time Java thread
application program interface (API). At present, there are many Java
platforms that support RTSJ and mature commercial products. For
example, TimeSys launched the first industrial version of the embedded
Java platform JTime, which conforms to the RTSJ, and the jRate runtime
system based on the RTSJ extension of GCJ (GNU Compiler for Java) [3,4].
This system with other real-time Java platform is somewhat different,
because jRate Java application source code to compile (AOT) generates
native code, which means that don't need a Java virtual machine, saved a
lot of unnecessary spending. However, these implementations are not
aimed at the real-time embedded domain, because the overhead footprint
(footprint) requirements in embedded systems are just as important as
real-time requirements. The aim of this article is using configurable
embedded Java processor FemtoJava executes Java bytecode, and
optimally effective operation code necessary for the execution of the
application, custom Java applications can by Sashimi development
environment to compile with VHDL form processor core, Sashimi can be
automatically converted FemtoJava processor architecture [5]. FemtoJava
is according to the specific application and design based on FPGA

technology reduced instruction of harvard structure place stack principle,
it contains more than one multiplexer and register, and a unique ALU, more
suitable for frequent changes in application fields.

However, the Sashimi environment lacks a programming model that
represents concurrent and real-time constraints. The main goal of this
article is to make up for the lack of the Sashimi environment by providing
an API based on RTSJ to support concurrent task specifications, which
support concurrent task specifications and time limit specifications. In
order to overcome the limitation of Sashimi environment, this paper has
made some modifications to the RTSJ specification. On the Sashimi
environment using the provided API, programmers can develop
concurrent real-time applications, and deploy them to FemtoJava
processor, implementation is based on the RTSJ API in the practical
application of embedded system.

2. THE SASHIMI ENVIRONMENT

Sashimi development environment is a free and effective JVM optimization
tool for embedded systems that developers can use to Java simulation,
emulation and directly implement embedded systems [5]. The Sashimi
environment can support concurrent tasks by extending the API,
implementing the RTSJ standard. According to the Sashimi environment;
designers can use the Java language to develop their applications directly.
In order to meet the constraints of Sashimi environment, some
programming restrictions must be followed. For example, programmers
can only use apis provided by Sashimi environment rather than standard
Java application interfaces. In addition, designers can only use static
methods and properties, because the Sashimi environment object does not
support dynamic allocation, and class hierarchy method of inheritance and
polymorphism, and the basic concept of object-oriented development
support. In the Sashimi environment, the Java source code uses the
standard Java compiler to generate Java bytecode. These generated classes
can be tested on the host platform using the API class library that emulates
the Sashimi environment. The next work, based on the generated Java
bytecode, comprehensive application and FemtoJava processor generates
a customized FemtoJava CPU control unit, the control unit is only
supported opcodes used by applications. The size of the control unit is
proportional to the number of different operating codes utilized by the
application software, making it suitable for embedded system applications.

In addition, this article needs to extend the API of Sashimi environment to
allow concurrent programming and add an operating system layer of

Contents List available at VOLKSON PRESS

 Mechanical and Control Engineering (MCE)
DOI : http://doi.org/10.26480/wsmce.01.2017.27.29

ISBN: 978-1-948012-06-5

RESEARCH AND APPLICATION OF RTSJ-BASED EMBEDDED SYSTEM API

Teng Haikun*, Liu Xinsheng, Wang Shiying

Computer and Information Engineering College, Heihe University Academic Road No. 1, Heihe City, China
*Corresponding Author Email: thk_1983@163.com

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited

1(3) (2017) 36-39

Topics in Intelligent Computing and Industry Design (ICID) 1(2) (2017) 27-29

Cite The Article: Teng Haikun, Liu Xinsheng, Wang Shiying (2017). Research And Application Of Rtsj-Based Embedded System Api,
Topics in Intelligent Computing and Industry Design, 1(2) :27-29.

28

dynamic task scheduling, so that Sashimi environment supports different
scheduling algorithms. In terms of expenditure footprint, energy
consumption, and real time performance, the impact assessment of these
algorithms is described in detail in reference to [6]. The downside of
Sashimi's environment is the lack of high-level real-time architecture,
leading designers to use low-level system calls to generate concurrent
processes and interact with the scheduler. In addition, the Sashimi
environment has no mechanism for clearly expressing task time
constraints. These issues are handled through the API provided in section.

3. THE PROPOSED API

As mentioned earlier, the main purpose of the development API is to
provide advanced real-time programming architecture support for
configurable embedded system hardware/software structures based on
FemtoJava micro-controllers. These APIs are based on Java real-time
specification [1]. It allows you to use a scheduling object, which is an
instance of the scheduler interface class, like the Realtime Thread (real-
time thread) class. At the same time; it also provides a set of class storage
parameters that represent specific resource requirements for one or more
scheduling objects. For example, the Ralease Parameters class (the release
parameter class, the parent of Aperiodic Parameters and Periodic
Parameters) contains some useful parameters to meet the real-time
requirements specification. In addition, the RTSJ API also supports the
following concepts: time values (absolute time and relative time), timers,
periodic/sporadic, non-periodic tasks, and scheduling policies. The term
'task' represents a scheduling member of the system context, or a
scheduling object.The following are simple descriptions of the main
classes.

Real-time Thread: the real-time thread class extends the default java.lang.
thread class. Real-time Thread class in real time embedded system
represents a real-time task, which is either periodic or non-periodic
depending on the release parameter object given. If the Periodic
Parameters type of the task is used to release parameters, the task is
periodic; if the task USES an instance of Aperiodic Parameters or the
Sporadic Parameters class, the task is sporadic and non-periodic.

Release Parameters: the release parameter class is the base classes for all
the release parameters of the real-time task. Instances of the Release
Parameters class include the cost of publishing, the startup time, and the
processor or cost overruns that miss the deadline. Its subclasses, Periodic
Parameters and Aperiodic Parameters, respectively represent the release
parameters of periodic and non-periodic tasks. Periodic Parameters must
contain a period value and the start/end time value. The Sporadic
Parameters class, a type of non-periodic task, inherits the Aperiodic
Parameters class, and the running cycle of the occasional task equals the
minimum of its two interval intervals.

Scheduling Parameters: the scheduling parameter class is the base class
for all scheduling parameters used by the scheduler object. The Priority
Parameters class represents the priority of the task, whose instances are
assigned to the Schedulable object, whose execution credentials are
determined by the priority. Designers simply create a new instance or
share an existing instance, provide an integer value to the constructor as a
priority, and assign to existing Schedulable.

Scheduler: the Scheduler itself is an abstract class. Its subclass "Priority
Scheduler", "Rate Monotonic Scheduler" and "EDF Scheduler" respectively
represent fixed priority, Rate Monotonic and the earliest time-priority
scheduling algorithm.

High Resolution time: compared with the java. util. date class, the RTSJ
provides strong support for the concept of time. The high-resolution time
class is an abstract class that cannot be instantiated. However, it stores
milliseconds and nanosecond fields for all other high-resolution time
classes and provides methods for its subclass Absolute Time (absolute
time), relative time (relative time). Absolute time is given by an offset, the
reference value is Greenwich time; Relative time is always a period of time.
It can take integers, negative Numbers, or zero. In addition, the rational
time class extends the Relative Time class by increasing the frequency,
which expresses the frequency at which something happens at each
interval.

Clock: RTSJ supports multiple Clock concepts, and the Clock API based on
RTSJ defines the real-time Clock expression global Clock reference. The
clock class returns an absolute time object representing the current date
and time of the system.

Timer: the Timer class is an abstract class that represents the system Timer.
Its subclass One Shot Timer and Perodic Timer respectively represent one-

time timers and periodic timers.

The implementation of some API classes in this article is slightly different
from the way the RTSJ recommended, due to the limitations of FemtoJava
processor architecture. This difference exists in Realtime Thread classes,
where two abstract methods of the real-time thread class must be
implemented in its subclasses—main Task () and exception Task (). They
represents the task body (the run () method of the normal Java thread) and
the exception handling code that misses the deadline. The latter replaced
a Async Event Handler (asynchronous event handler) object, in the RTSJ
asynchronous event handler is designed to deal with real-time
applications may need to deal with different systems and programming
defined events, and asynchronous event handler object should be passed
to the release of the parameter object. If the task misses the deadline, an
exception is thrown and the exception Task () function is executed. After
the exception handling code is executed, the task execution process may
jump to the run () method or terminate, depending on the characteristics
of the real-time task. If the task is periodic, the run () method should be
restarted. This difference suggests using the scheduling algorithm for task
pair concepts.

In section 1, the traditional version of the Sashimi environment does not
support object creation. As a result, we need to extend some of the new
attributes to the Sashimi environment in order to provide full support for
apis developed on FemtoJava platform. First, you need to extend the
integration of Sashimi environment support objects. According to the
relevant changes, application objects are allocated statically at the time of
composition. In other words, all objects in the system define a priority, and
the entire memory is allowed to be detected for the convenience of storing
objects in RAM. Although it may involve high memory usage, but it is very
suitable in the real-time system development approach, because it avoids
the use of the garbage collector (GC), no time limit, do not interrupt the
garbage collector algorithm, makes the Java to run the program is quite
lack of certainty, the uncertainty in the real-time embedded system should
not be tolerated.

FemtoJava microprocessors introduce four new opcodes to support the
provided APIs: getfiel, putfield, invokevirtual, and invokspecial. The first
two operators are related to the access to the object area, and their
functions are to acquire and set values. The other two are related to
method invocation, and the invokevirtual operation code is used to invoke
public or protected methods; The invokspecial al operation code is used to
invoke the constructor and private methods. Another extension of the
FemtoJava microprocessor is the addition of a real-time clock to provide
time concepts for embedded systems. Both API members and scheduling
layers based on the RTSJ can use this clock.

4. APPLICATION OF API IN REAL EMBEDDED SYSTEM

 This paper uses the elevator control system as a case to verify the
expansion of Sashimi environment, which is a system for optimizing the
scheduling of multiple elevators, including the concurrent tasks and hard
real-time constraints [7]. Because of the diversity of elevator control
system tasks, traditional development means will be difficult to solve the
combination optimization problem of online scheduling and resource
allocation. This article USES real-time Java multithreading technology to
change these situations. Figure 1 shows the elevator control system of the
kind of collaboration diagrams, we can observe from the figure, the Timer
class implements the Sashimi environment task time constraints, through
the get Real time Clock () method call real time clock single object to obtain
real time clock reference.

Exception

LiftInitializer

Controller

Queue

Passenger

Manager
SetLock()

Press()

Activate()

Request()
IndicateLight

Set()

LiftDoorTimer

State

Position

OverWeight

Normal

StartUp(Floor)

StartDown(Floor)

Stop()

Warn()

CancleWarn()

Figure 1: Class collaboration diagram of elevator control system

Although there are many classes in the elevator control system, this article
will focus on "lift initializers" and "Lift Door" classes. Because the authors

1(3) (2017) 36-39

Topics in Intelligent Computing and Industry Design (ICID) 1(2) (2017) 27-29

Cite The Article: Teng Haikun, Liu Xinsheng, Wang Shiying (2017). Research And Application Of Rtsj-Based Embedded System Api,
Topics in Intelligent Computing and Industry Design, 1(2) :27-29.

29

consider these two classes to be sufficiently representative in the use of
apis. Lift Initializer class is the main class of elevator control system. The
function of this class is to be responsible for object allocation, initialization,
and startup (real-time task application). From the elevator control system
code, we can see that only static objects are allocated. The initSystem ()
method represents the starting point of the application execution process
and provides the function of object initialization and real-time task start.
Real-time task start can be implemented by calling the start () method. The
last call to the sleep () method, which means that the initialization class is
no longer used, and is locked. This approach is only used in system
initialization methods. The Lift Initializer code of the elevator control
system is as follows:

 public class LiftInitializer {
 / / application object allocation
public static Controller nominalCtrl = new Controller();
public static Passenger passenger = new Passenger ();
public static LiftDoor liftdoor = new LiftDoor ();
public static Queue queue = new Queue ();
public static IndicateLight indicatelight = new IndicateLight();
public static void initSystem() {
.../ / object initialization
/ / real-time mission startup:
Lift.nominalCtrl.start();
.../ / start other tasks
While (true) FemtoJava.sleep()；

}
};

With regard to the "Lift Door" class, the associated pattern in the system
represents a concurrent real-time task, which is closely related to the
system clock. This article uses a custom different application. It is
important to emphasize the FemtoJava processor generated by the
optimized Sashimi environment, because it only supports Java code for
embedded system software. Another thing to note: once the application
objects are allocated within the integration time, there is no need to use
the garbage collector. While these can lead to higher memory consumption;
it provides the deterministic requirements for real-time embedded
systems.

5. CONCLUSION

The goal of this article is to optimize real-time embedded system
development using the RTSJ API, which is the target platform for

FemtoJava processors dedicated to Java bytecode. These API provides
programmers with the tools necessary to solve the virtual machine and the
application of variability, and programmers can be used in real-time
applications said senior mechanism concurrent and timing constraints. In
order to ensure that the API is as close to the RTSJ specification as possible,
this paper makes minor modifications to the RTSJ specification, which
further enhances the quality of the embedded real-time service.
Meanwhile, the advantages of real-time Java will greatly change the design
difficulty of embedded control software. In the years to come, real-time
Java technology will have a huge impact on embedded control.

ACKNOWLEDGEMENT

This paper is supported by Heilongjiang Province Colleges and
Universities Basic Scientific Research Service Charge HEIHE University
Special Fund Project (ID: 18KYYWFRC04).

REFERENCES

[1] Bollella, G., Gosling, J. 2011. The Real-Time Specification for Java
[OL].04. http://www.rtj.org/rtsj-V1.0.pdf.

[2] Eric, J.B., Greg, B. 2010. Java real-time programming [M]. Tian Siyuan
(translated). BeingJing: Mechanical industry press.

[3] Haikun, T. 2014. Design of RTSJ-Based Intelligent Home System
Gateway [J]. BioTechnology: An Indian Journal, 10 (9), 3937-3943.

[4] Angelo, C., Douglas, C.S. 2012. The Design and Performance of the jRate
Real-time Java Implementation[C]// the 4th International Symposium on
Distributed Objects and Applications. Irvine, CA, October-November.

[5] Ito, S.A., Carro, L., Jacobi, R.P. 2011. Making Java Work for
Microcontroller Applications [J]. IEEE Design and Test of Computers, 18
(5), 100-110.

[6] Becker, L.B., Wehrmeister, M.A., Carro, L., Wagner, F.R., Pereira, C.E.
2014. Evaluating High-level Models for Real-Time Embedded Systems
Design[C]// 29th Workshop on Real-Time Programming. Istanbul.

[7] Jianzhong, C., Fei, L. 2012. The modeling and control strategy of a new
elevator group control system [J]. Microcomputer information.

http://www.rtj.org/rtsj-V1.0.pdf

