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ABSTRACT 

Coarse pose registration is a crucial step in 6DOF pose estimation. Assuming the objects to be estimated are 
regular and their 3D models are known, this paper presents local geometric features (LGFs) to estimate the poses 
of objects in point cloud. Coordinate frames describing the object’s pose are defined according to geometric 
information. Pose estimation are performed by calculating the transformation between the frames in the scene 
point cloud and the reference model. Two kinds of LGFs are proposed: one is the corner edge feature (CEF) which 
exploits corner and radiating edges, and the other is the circle normal feature (CNF) which exploits circle center 
and normal vector of the plane where the circle is located. Included angle sequence of adjacent edges and circle 
radius, which are invariant to SE (3) transformation, are selected to identify CEF and CNF, respectively. Simulation 
is performed to verify the feasibility of the proposed features.

1. Introduction

Coarse pose registration is a crucial step in 6DOF pose estimation in the 
field of 3D machine vision. It is usually followed by fine matching which is 
implemented through iterative closest point (ICP) algorithm. Due to the 
coupling between position and orientation, a proper coarse registration 
can accelerate the computation of the refinement, while a bad estimation 
might lead to wrong or even failed final estimation of the object’s pose.  

Pose registration problem has been overwhelmingly researched during 
the past decades. A group of scientists present the whole pipeline of 6D 
pose estimation and introduce the common used local and global 
descriptors [1]. Other study concentrates on coarse registration and 
perform a comprehensive review [2]. According to, coarse registration can 
be further divided into key point detection, description, and search 
strategies for correspondence [2]. In the step of detection, a certain set of 
key points which are more distinctive are selected according to some 
criterion. For example, Harris 3D detector applies Harris operator to each 
point and extracts the point with highest Harris value as key points [3].  
Descriptor is then defined on these key points to represent the shape 
characteristics of the object. Depending how the characteristics are 
represented, descriptor can be categorized into global and local 
descriptors. Global descriptors try to describe monolithic feature of the 
object. For example, Ensemble of Shape Functions encodes the distance, 
angle between points and their combined segments, and area of meshes 
[4]. Curve Skeleton use skeletal graph to preserve the topological property 
of the shape [5]. Local descriptors use the neighborhood of key point to 
construct signature, e.g. Fast Point Feature Histogram and Signature of 
Histograms of Orientations [6,7]. Searching correspondence is responsible 
for pairing the scattered descriptors in the scene and reference point cloud 
so that a transformation can be estimated. Usually multiple sets of 
descriptors at different viewpoint of the reference point cloud need to be 
generated, which is trivial and time consuming [8]. As the correspondence 
grouping is performed on two sets of points, the structure feature of the 
object and the intrinsic constraints between the points are abandoned, 
which could lead to wrong or failed pose estimation.  

This paper proposes an approach for coarse pose registration using local 
geometric features (LGFs). Assuming the objects to be estimated are 
regular and their 3D model are known, the proposed approach defines 
coordinate frames to describe the object’s pose at corners with radiating  

edges and centers of circular brims. Geometric parameters, which are 
invariant to SE (3) transformation, are selected to identify LGFs. Pairing 
LGFs detected in the point cloud and that specified according to the 3D 
models, transformation candidates from the initial pose to the current 
pose can be directly and easily calculated. using only corner, edge and 
board points, ICP can quickly filter the candidates and obtain the final 
coarse estimation.   

The rest of the paper is organized as follows. In Section 2, two kinds of local 
geometric features are presented according to different local structures. 
Section 3 introduces the pipeline of the proposed coarse registration 
method. In Section 4, simulation is performed to verify the feasibility of 
the proposed LGFs. Finally, we conclude the paper in Section 5.  

2. LOCAL GEOMETRIC FEATURES 

Large part of daily objects are regular and have distinct geometric features, 
such as corner with radiating edges of a box and circular brim of a cup. 
Some of the geometric information can be used to define a coordinate 
frame to directly describe the pose of the object. For example, with the 
position of the corner and two edge vectors, the pose of the object can be 
decided. And some information, e.g. circle radius and included angle 
sequence between the edges, is invariant to SE (3) transformation and is 
suitable to be a descriptor for LGF correspondence grouping between 
point cloud and 3D model.  

In this section, we present two kinds of LGFs according to different local 
structures. One is the corner edge feature (CEF). CEF utilize the corner and 
radiating edges to define a coordinate frame. The sequence of included 
angles between the edges is invariant to SE (3) and is chosen to identify 
the feature. The other is the circle normal feature (CNF). CNF utilizes the 
center of the circle and the normal of the plane where the circle is located 
to define the frame. Circle radius is chosen to identify the feature. 

2.1 Corner Edge Feature 

As shown in Figure 1, for a corner with radiating edges, we can define a 
frame with the position of the corner and two radiating edge vectors, 

which describes the pose  of the object. Therefore, we have T
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(1) 

where is the position of the corner; denotes the X axis of the 

defined frame and is an edge vector selected from the radiating edges; 

denotes the Z axis and is defined with and its adjacent edge vectors, e.g. 

, that is, . 

The included angles between the edges are invariant to SE (3) 
transformation. In order to augment the discrimination, the sequence of 
the included angles between adjacent radiating edges is selected to 
identify the feature. The edges are numbered, and the sequence of the 
included angles is defined corresponding to the edge index sequence, i.e., 

(2) 

where  denotes the included angle between edge 1 and 2, edge 

2and 3, and edge 3 and 1. 

Both the edge index sequence and included angle sequence are circular 

linked list, that is,  can also mean  which 

corresponds to the edge index sequence . 
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Figure 1: Corner edge feature 

It is important to obtain the correct edge index sequence. Given the 
object’s 3D model, we can easily determine the edge index sequence and 
specify the included angles and edge vectors via CAD software. By contrast, 
determination of edge index sequence from the scene point cloud is 
complicated.  As the included angles between 3D vectors would mislead 
the detection, we project the edge vectors into a 2D plane, as shown in Fig. 
2. The normal  of the plane is defined as 

(3) 

Choosing one projected vector as the primary, e.g. , rotate it around the 

normal , the meeting sequence with other projected vectors are the 

correct sequence in 3D space.  

Figure 2: Detection of edge index sequence 

The included angle sequence is used to find the correspondence between 
CEFs in scene point cloud and reference 3D model. However, due to the 
limited viewport, all the edges radiating from the corner might not be seen 
by the camera, that is, only partial included angles can be calculated. 
Nevertheless, with at least two edges, the pose of the object can be decided 
and CEF is still feasible. For example, if only two edges from corner C can 
be seen, we obtain 

(4) 

To avoid effect from the wrong included angle  between edge 2 and 1, 

one included angle is discarded from the sequence and then compared 
with CEFs in the reference 3D model. 

With the CEF correspondence between the scene point cloud and the 

reference 3D model, transformation candidates can then be calculated. 

(5) 

where is the pose matrix of CEF in the scene point cloud; denotes 

the pose matrix of the corresponding CEF in the reference 3D model. 

2.2 Circle Normal Feature 

Apart from corner, circle is another distinct geometric feature, such as the 
brim of a cup. Similar to CEF, circle normal feature (CNF) uses geometric 
information to construct a coordinate frame to describe the object’s pose 
as well. The circle center and the normal of the plane where the circle is 
located are used to construct the coordinate frame. When the object is a 
solid of revolution, e.g. a vase in Figure 3(a), an arbitrary vector parallel to 
the plane can be selected as the X axis. On the other side, if the object has 
principal axes when projected on the plane, we can choose one principal 
axis as the X axis. For example, a cup in Figure 4(b) has a handle, we can 
choose the direction pointing from the center to the handle as the X axis. 
This determine a unique frame and can accelerate coarse pose registration. 
The radius of the circle is invariant to SE(3) transformation and is selected 
to identify CNF. 

(a)    (b) 

Figure 3: Circle normal feature. (a) CNF in revolved object. (b) CNF with 
primal axis 

CNF is estimated using the edge and board points in the point cloud. After 
the detection of corner, edge and board points, the number of the extracted 
points are significantly reduced, compared to the original point cloud. 
Hence, circles used to specify the parameters of CNF can be quickly 
estimated using random sample consensus (RANSAC). And the principal 
axis can be detected using principal components analysis (PCA) [9]. 

3. COARSE POSE REGISTRATION

As stated in the previous section, both CEF and CNF utilize local geometric 
information to define coordinate frames so that the pose of the object can 
be directly described. Coarse registration is performed by calculating the 
transformation between the matched LGFs in the scene point cloud and 
the reference model. In this section, we firstly introduce the pipeline of 
coarse pose registration using LGFs. Then, the detection of corner, edge, 
and board feature points are introduced. Algorithm for coarse pose 
registration is presented. 
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3.1 Coarse Pose Registration Pipeline 

Figure 4 shows the block diagram of coarse pose registration pipeline. The 
scene point cloud is segmented into individual clusters after filtering and 
segmentation. Corner, edge, and board feature points are detected on each 

cluster. These points consist of a subset  of the original point cloud 

. Upon the feature points, edges and circles are extracted using RANSAC. 
CEF and CNF are then estimated, and coordinate frames describing the 
pose of the object are constructed. Pairing each LGF estimated in the point 
cloud to that specified with 3D model, transformation candidates 
representing the current relative pose of the point cloud with respect to 
the initial pose are obtained. These candidates will be filtered using ICP 

algorithm [10]. The feature points  which has much smaller number 

than  are used in ICP, and wrong transformations will cause significant

divergence. Therefore, the final coarse pose will be quickly estimated 
through ICP filtering. 

Segmented 

Point Cloud

Feature Point 

Detection

LGF 

Estimation

LGF 

Correspondence 

Grouping

ICP 

Filtering

Figure 4: Block diagram of coarse pose registration pipeline 

3.2 Detection of Corner, Edge, and Board Feature Points 

Feature points detection is critical in the proposed approach. The LGFs are 
estimated based on the detected feature points, i.e. corner, edge, and board 
points. In addition, the number of the feature points is much smaller than 
that of the original point cloud, which will accelerate the filtering of the 
transformation candidates. Gumhold et al. proposed a method of feature 
point detection through PCA on the neighborhood of a point, which has 
been proved to be an efficient method to detect feature points [11]. Here 
we briefly introduce the method of feature point detection. 

For each point  in the point cloud , its k-nearest neighbor points 

 need to be gathered. The center location  and the correlation 

matrix  can then be given by 

(6) 

(7) 

The eigenvectors  and the corresponding eigenvalues 

, where , of  define the correlation 

ellipsoid which describes the local surface property around the point.  
For a point on a flat surface the correlation ellipsoid 

degenerates to a pancake with and . At a corner point, 

the correlation ellipsoid has no preference direction and all eigenvalues 
should be approximately the same. In the case of an edge point the 
correlation ellipsoid is stretched in the direction of the edge and the 

eigenvalues obey and . In the case of a border 

point, the ellipsoid degenerates to an ellipse. The smallest eigenvalue 

is approximately zero and the other two eigenvalues obey . 

According to the properties of the correlation ellipsoid at different 
features, corner, edge, and board points can be extracted from the 
segmented clusters.  

3.3 Algorithm for Coarse Pose Registration 

Table 1 shows the pseudo code for the proposed coarse pose registration 
method. The LGFs in the models are pre-specified. After the estimation of 
LGFs in the segmented point cloud, each LGF will be paired with each LGF 
of the models. If they are matched, transformation candidates will be 
stored as well as the corresponding model. The candidates will be filtered 
using ICP. For each candidate, the feature points will be transformed. The 
shortest distance from the point in transformed feature points to the 
model will be calculated. If it exceeds the threshold, the candidate is not 

the correct transformation and will be discarded. Due to the property of 
LGFs that incorrect candidates will cause larges distance, the ICP filtering 
will run quickly.  

Table 1: Pseudo code for coarse pose registration 

Data: Segmented Point Cloud, LGFs in Models, 3D Models 
Result: Coarse Pose Matrix 

1 detecet feature points; 
2 estimate CEFs and CNFs from the feature points using RANSAC; 

// Pair LGFs in the point cloud to LGFs of each reference model. 
3 for scene_lgf in scene_lgf_set 
4     for refer_model in refer_model_set 
5   for refer_lgf in refer_model.refer_lgf_set 
6   if scene_lgf matches refer_lgf then 
7       transform_candidate_set.append(); 

// ICP Filtering. 
8 for transform_candidate in transform_candidate_set 
9     transform feature points using transform_candidate; 
10     for point in the transformed_feture_points 
11   calculate the shortest distance to the corresponding model 
12   if distance > distance_threshold then 
13   break; 

4. SIMULATION 

In this section, we use BlenSor, which is a software package to simulate 
various range cameras and can facilitate the development of algorithms on 
3D machine vision,  to generate point cloud from the model of a scene and 
estimate the coarse pose of the objects in the scene using the proposed 
LGFs [12]. 

As shown in Figure 5, 3 objects, a vase, a cup and a square frustum, are on 
the table. They cover the proposed CEF and CNF. Point cloud is generated 

under noise which is subject to a normal distribution with mean 

and variance . Figure 5(c) shows the detected feature points in 

the segmented point clouds. The green points with larger size represent 
board points, and the blue points represent edge points.  

Both the vase and the cup are estimated via CNF. Therefore, here we take 
the vase as an example to demonstrate the efficiency of CNF. According to 
the output of the proposed coarse estimation algorithm, the pose matrices, 
with respect to the camera frame, of the matched CNFs in the scene point 
cloud and the 3D model are as below. 

 (8) 

(9) 

Position error is . Since the vase is 

a solid of revolution, we choose the included angle between normal 
vectors, i.e. the Z axis vectors in Eq. (8) and (9), to represent orientation 

error. The orientation error is . The large position and 

orientation error is mainly caused by the inaccurate estimation on the 
parameters of circular brims. 
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(c) 

Figure 5: Coarse pose estimation using LGFs. (a) 3D model of the scene. 
(b) Point cloud with noise. (c) Detected feature points in the segmented 
point clouds 

The square frustum is used to verify the efficiency of CEF. The pose 
matrices of the matched CEF in the scene point cloud and the 3D model are 

(10) 

(11) 

Position error is . Orientation error 

is represented using axis angle of rotation matrix [13]. The rotation angle 
from the coordinate frame in the reference model to that in the scene point 

cloud is . Compared to CNF, the position and 

orientation error in CEF is much smaller [14]. 

5. CONCLUSIONS 

In this paper, we present two kinds of local geometric features (LGFs) for 
coarse pose registration. The proposed LGFs utilize the geometric 
information to define coordinate frames on the estimated objects. Pose 
registration is performed by calculating the transformation between the 
frames of the matched LGFs in the scene point cloud and the reference 3D 
model. How to construct these two LGFs, i.e. corner edge feature (CEF) and 
circle normal feature (CNF), are introduced. The pipeline of coarse 
registration using LGFs is presented. Simulation is done and verifies LGFs’ 
feasibility. The simulation results also indicate that the registration error 
is affected by the estimation accuracy of the parameters of 3D lines and 
circles. To conquer this, in future work we will optimize RANSAC 
algorithm so that it can reduce estimation error.  
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