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A typical job posting on the Internet receives a massive number of applications within a short window of 
time. Manually filtering out the resumes is not practically possible as it takes a lot of time and incurs huge 
costs that the hiring companies cannot afford to bear. In addition, this process of screening resumes is not 
fair as many suitable profiles don’t get enough consideration which they deserve. This may result in missing 
out on the right candidates or selection of unsuitable applicants for the job. In this paper, we describe a 
solution that aims to solve these issues by automatically suggesting the most appropriate candidates 
according to the given job description. Our system uses Natural Language Processing to extract relevant 
information like skills, education, experience, etc. from the unstructured resumes and hence creates a 
summarised form of each application. With all the irrelevant information removed, the task of screening is 
simplified and recruiters are able to better analyse each resume in less time. After this text mining process is 
completed, the proposed solution employs a vectorisation model and uses cosine similarity to match each 
resume with the job description. The calculated ranking scores can then be utilised to determine best-fitting 
candidates for that particular job opening. 

KEYWORDS 

Information Retrieval, Natural Language Processing, Resume Parser, Resume Analyzer, Resume 
Summarisation, Ranking Candidates, e-recruitment, Cosine Similarity, Content-based Recommendation, 
Vector Space Model. 

1. INTRODUCTION

With the rapid increase in internet connectivity, there has been a change 
in the recruitment process of all major companies. With the help of online 
job postings in various job portals and websites, recruiters are able to 
attract a wide variety of people for their openings. Though e-recruitment 
has provided convenience and savings for both the recruiters and the 
applicants, some new challenges arise. Large companies and recruitment 
agencies often receive thousands of resumes every day. This situation is 
even more aggravated due to the higher mobility of workers and in 
situations of economic distress, where many people are looking to get jobs. 
With less than 5% of people to be selected from these applications, it is 
impractical for the recruiters to manually go through each and every 
resume for these limited number of openings. Another problem faced by 
the organisations is that there is no one standard resume format used by 
these applicants. People come from varied fields of profession and have 
different backgrounds. Each one of them has had different types of 
education, has worked on different projects and thus has a unique style of 
presenting his/her credentials in the resume. Resumes are unstructured 
documents that come in various file formats (.pdf, .doc, .docx, .jpg, .txt etc.) 
and their content is not written according to standard formats or 
templates. This means reading resumes is not simple and thus recruiters 
spend a large amount of time going through the resumes for selecting the 
right candidates. Many job portals and external websites came up to 
reduce this difficulty of handling unstructured and diverse resumes. These 

require candidates to manually fill up all the information of their resume 
in an online form in a structured manner, thus creating a candidate 
metadata. The problem with this approach is that it requires redundant 
efforts on the part of the candidates, and they often miss out on filling 
complete information in these templates. These websites use a generic 
format that isn't domain-specific and thus is not optimal for all jobs. The 
employers then use these templates to apply the keyword-based search 
for shortlisting candidates. This keyword-based search functionality is 
insufficient to match candidates with the job description (Malinowski, 
Jochen, et al., 2006). This is so as it relies only on the existence of certain 
required keywords and has various extraction limitations like avoiding 
natural language semantics such as synonyms, word combinations, and 
contextual meaning of the content present in the resume (Singh, Amit, et 
al., 2010). Therefore, these Boolean search methods often give irrelevant 
results and deserving candidates miss out on opportunities of being 
shortlisted. 

In order to get better results for the resume shortlisting, it is necessary to 
investigate more efficient approaches to candidate and job description 
matching. Our proposed solution will choose the best fitting candidates for 
a specific opportunity by relating the main features of the applicants’ 
profile with the requirements defined in the job description. The system 
works in two main phases. In the first phase, all relevant candidate 
information like skills, work experience, years of education, certifications, 
etc. is extracted from the unstructured text in the resumes. The system 
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uses Natural Language Processing to parse these relevant qualification 
details and then creates a summarised version of each resume (Allahyari, 
Mehdi, et al., 2017) irrespective of the order of content or the file format. 
With all the extraneous and irrelevant details removed, it becomes easy 
for the evaluator as he can quickly look at the summarised form and 
analyse the credentials of the candidates. The second phase of our system 
involves ranking the resumes based on the similarity of their content with 
the given job description. The documents are represented as vectors using 
Vector Space Model (Arguello and Jaime, 2013) and then similarity 
measures like cosine similarity (Huang and Anna, 2008) are used to 
measure which set of resumes are the best fitting for the particular job. In 
the end, a ranked list of applicants is obtained. 

This paper is organised in the following sections: Section 2 describes the 
related work which has been done in this field. Section 3 introduces the 
detailed methodology and the theoretical concepts involved with our 
solution. Section 4 provides an insight into the system architecture we 
have developed. Section 5 represents the results of the experiment 
performed using our system and Section 6 concludes our work followed 
by the future scope in Section 7. 

2. RELATED WORK

The recruitment process in today’s world has witnessed a major change 
with the evolution of technologies like the Internet. The following section 
summarises some of the literary work performed in this domain of e-
recruitment systems. The proposed solutions use various approaches with 
the aim of achieving automated screening of candidates. The work 
presented as EXPERT (Kumaran, V.S. and Sankar, A., 2013) proposed the 
use of ontology mapping for screening candidates for the given job 
description. It included three phases of operation which were the creation 
of candidate ontology, construction of job criteria ontology document and 
then finally mapping of both of these to evaluate which candidates are 
eligible for the job. In 2012, an automated job screening system was 
proposed (Faliagka, Ramantas, Tsakalidis, and Tzimas). It discusses 
different machine learning algorithms and uses Support Vector 
Regression to create a list of ranked candidates for the given job. Another 
work presented (Weathington and Bechtel, 2012) that described how 
social media (e.g. LinkedIn, Facebook, etc.) information of the applicants 
can be used for recruitment decisions. In another approach, the work that 
was proposed (Laumer, S. and Eckhardt, A., 2009) described a 
collaborative filtering based system to recommend applicants that best fit 
a job. We also studied a work (Malinowski, Weitzel, and Keim, 2008) that 
considered matching interpersonal compatibility of the team members 
with the prospective hire to make recruitment decisions. Our work takes 
a different approach as it focuses mainly on the content of the resumes 
where we perform the extraction of skills and related parameters to match 
candidates with the job descriptions. 

3. METHODOLOGY

In this section, we describe the concepts that facilitate the construction of 
the proposed Automated Resume Screening System. The system works in 
two phases as described below. 

3.1 Information extraction 

The first phase of our proposed system involves information extraction 
using Natural Language Processing. The information in the resumes is not 
present in a structured format. There are noises, inconsistencies and 
irrelevant bits of data which is of no use to the recruiters. The objective is 
to derive relevant keywords from the unstructured textual data in the 
resume without any need of human crawling efforts. Using techniques like 
Tokenization, Stemming, POS Tagging, Named Entity Recognition, etc., our 
system obtains important job-related content (skills, experience, 
education, etc.) from the uploaded candidate resumes. The result is a 
summarised version of each resume in a JSON format which can be easily 
used for further processing tasks in the next phase of this resume 
screening system. 

3.1.1 Tokenization 

After converting the various resume formats (.docx, .pdf, .jpg, .rtf, etc.) into 
text, we begin the tokenization process to identify terms or words that 
form up a character sequence. This is important as through these words, 
we will be able to derive meaning from the original text sequence. 
Tokenization involves dividing big chunks of text into smaller parts called 
tokens. This is done by removing or isolating characters like whitespaces 
and punctuation characters. Tokens are sentences initially (when 
tokenized out of paragraphs) and then are further split into individual 

words. By performing Tokenization, we can derive information like the 
number of words in a text, frequency of a particular word in the text and 
much more. The tokenization can be performed in multiple ways such as 
using Natural Language Toolkit [NLTK], the spaCy library, etc. 
Tokenization is a mandatory step for further text processing such as 
removal of stop words, stemming and lemmatization. 

3.1.2 Stemming and lemmatization 

It is frequently seen that a single word of the English language is used in 
various different forms in different sentences according to its grammatical 
rules. For example -implement, implemented and implementing are just 
different tenses of the same verb. This situation results in the need to 
reduce all the altered or derived forms of a word to their central stem or 
base so that these derivationally related words with similar meanings are 
not considered to be different from each other. Both Stemming and 
lemmatization have the same objective but differ in their approach. 

“Stemming is the mechanism of reducing inflected or derived words to 
their word root, or stem. It is a crude heuristic process that involves 
chopping off the ends of words to achieve this objective, and often includes 
the removal of derivational affixes” (Jivani, A.G., 2011). These are rule-
based algorithms in which a particular word is tested on a range of 
conditions and then based on a list of known suffixes, decides how to cut 
it down. It is noteworthy that the root derived after stemming may not be 
identical to the morphological root of the word. Due to the heuristic-based 
approach of stemming, it suffers from issues such as under-stemming and 
over-stemming. Some common stemming algorithms used are Porter-
Stemmer, Snowball stemmer, and Lancaster stemmer. On the other hand, 
lemmatization is the process of utilising a language dictionary to perform 
an accurate reduction to root words. Unlike Stemming which simply cuts 
off tokens by simple pattern matching, lemmatization is a more careful 
approach that uses language vocabulary and morphological analysis of 
words to give linguistically correct lemmas. This means lemmatization 
utilises the knowledge of context and therefore can differentiate between 
words that have different meanings based on parts of speech. For the 
English language, our system uses the WordNet Lemmatizer (based on 
WordNew Database) provided by the NLTK python package. 

3.1.3 Parts of speech (POS) tagging 

It is a process of assigning grammatical information to a word based on its 
context and its relationship with other words in the sentence (Gelbukh, 
2014). The part-of-speech tag specifies whether the word is a noun, 
pronoun, verb, adjective, etc. according to its usage in the sentence. It is 
important to assign these tags so as to understand the correct meaning of 
a sentence and for building knowledge graphs for named entity 
recognition. This process is not as simple as mapping a word to their 
corresponding part of speech tags. This is so as a particular word may have 
a different part of speech based on different contexts in which it is used. 
For example: In the sentence “I am building a software”, building is a Verb, 
but in the sentence “I work in the tallest building of that street”, building 
is a Noun. Also called grammatical tagging or word-category 
disambiguation, it is a supervised learning solution that analyses the 
features such as the preceding word, following word, first letter 
capitalized or not, etc. to label the words after tokenization. Rule-Based 
POS tagging, Stochastic POS tagging, and Transformation based tagging 
are mostly used (Hasan, 2006). 

3.1.4 Chunking 

Chunking is a process that aims to add more structure to sentences by 
grouping short phrases with parts of speech tags. Because parts of speech 
tags alone cannot give information about the structure of the sentence or 
the actual meaning of the text, chunking combines parts of speech tags 
with regular expressions to give a result as a set of chunk tags like Noun 
Phrase (NP), Verb Phrase (VP), etc. Also called Shallow Parsing, it involves 
the construction of a parse tree that can have a maximum one level of 
information from roots to leaves. This ensures there is more information 
than just part of speech of the word without needing to create a full parse 
tree. Chunking segments and labels multi-token sequences (Bird, Klein 
and Loper, 2009), mostly making groups of “noun phrases” that are used 
for finding named entities.  

3.1.5 Named entity recognition 

Named Entity Recognition is an information extraction technique which 
extracts relevant information by classifying chunks of unorganized text 
into predefined categories like names of persons, companies, contact info, 
educational credentials, and skills. After classifying the unstructured 
resume data into such different sets of categories, our aim is to use a 
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similarity model to determine the similarity between the categorized 
resume data and the requirements provided by the recruiters. There are 
many approaches to implement the Named Entity Recognition (Mansouri, 
A., Affendey, L.S. and Mamat, A., 2008) in order to derive relevant 
categories from unstructured data. These include the Rule-Based 
approach in which we define our own algorithms according to the 
required domain. We can also use regular expressions, which finds 
patterns in a string to detect the named entities. Another approach is using 
Bidirectional-LSTM with the Conditional Random Field algorithm for 
named entity recognition as a sequence labelling problem (Huang, Z., Xu, 
W. and Yu, K., 2015). 

We have used the spaCy module which consists of various pre-trained 
models that can recognize a number of default entities from the content of 
the documents. These models use language information to detect these 
entities. We also trained the model on a large annotated set of resume 
samples for better accuracy in the entity recognition. We could detect 
entities like name, phone number, email, educational institute, 
organisation etc. from the resumes as shown in figure 2. 

3.2 Content based candidate recommendation 

The second phase of our proposed system aims to build a content-based 
recommendation system (Guo, X., Jerbi, H. and O'Mahony, M.P., 2014) that 
utilises the extracted entities from phase 1 to recommend the most 
appropriate resumes for the given job description. The system employs 
concepts like Vectorisation (Salton, G., Wong, A. and Yang, C.S., 1975), 
importance or weight assigning techniques like TF-IDF (Jabri, Siham, et al., 
2018) and similarity measures like cosine distance (Huang and Anna, 
2008) for calculating the similarity among the contents of the documents. 

3.2.1 Vectorization 

Vector space is a geometric structure formed by a set of elements called 
vectors. These can be added together and can be multiplied (“scaled”) by 
certain numbers, called scalars in this context. It is an algebraic model for 
representing text information for Information Retrieval, Natural Language 
Processing and Text Mining. Representing documents in a vector space 
model is called vectorisation. It is the process of turning a document into 
a numerical vector. An important reason behind performing vectorisation 
is that most machine learning models require the input to be numerical 
vectors rather than strings. A common way of vectorising text is to map 
every possible word to a specific integer. If we have a large array then 
every word fits into a unique slot in the array. The value at that index is 
the number of times the word occurs. Generally, our array size is less than 
the corpus vocabulary. We should thus have a vectorisation strategy to 
account for this. 

3.2.2 TF-IDF 

TF-IDF stands for “Term Frequency – Inverse Document Frequency” 
(Stecanella, 2020). The TF-IDF weight is often used in text mining 
techniques. TF-IDF was invented for information retrieval and document 
search. This weight is a numerical measure to determine how important a 
term is with respect to a document in a collection or corpus. The 
importance increases proportionally to the frequency of a word within the 
document but is offset by the number of documents that contain the word. 
So, terms that are frequently used in every document, such as this, and, 
what, whom, is, the, if, etc. rank low even though they may appear many 
times since they don’t mean much to that document in particular 
(Stecanella, 2020). The TF-IDF value for a term in a document is calculated 
by multiplying two different metrics (Stecanella, 2020) as shown in 
equation (1) below. 

𝑇𝐹 − 𝐼𝐷𝐹 (𝑡, 𝑑) =  𝑇𝐹 (𝑡, 𝑑) ∗  𝐼𝐷𝐹 (𝑡, 𝑑) (1) 
 Term Frequency: It measures how frequently a word occurs in each
document in the corpus. Since a word may occur more number of times in 
lengthy documents than shorter ones, so you need to adjust or normalize 
this frequency. A normalized term frequency is calculated by dividing the 
number of times a term appears in a document by the total number of 
terms in that document. Mathematically, we can write it as (Jabri, Siham, 
et al., 2018) shown below in equation (2). 

𝑇𝐹 (𝑡, 𝑑) =  
𝑓𝑟𝑒𝑞 (𝑡, 𝑑)

∑ 𝑓𝑟𝑒𝑞 (𝑡𝑖, 𝑑)𝑛
𝑖

(2) 

Here, freq (t, d) is the count of the instances of the term t in document d, 
TF (t, d) is the proportion of the count of term t in document d, and n is the 
number of distinct terms in document d.  

 Inverse Document Frequency: It measures how important a word is for
all documents in the corpus. In other words, this metric helps to know how 
rare or common a word is across in the corpus. It weighs down the terms 
that occur more often while scaling up the rare terms. The terms that 
appear more often in the set of documents have IDF value close to 0 while 
the rare terms have a high IDF. It is calculated by dividing the total number 
of documents by the number of documents that contain a term and then 
calculating the logarithm (Stecanella, 2020). Mathematically, we can write 
it as shown below in equation (3). 

𝐼𝐷𝐹(𝑡) = 𝑙𝑜𝑔 (
𝑁

𝑐𝑜𝑢𝑛𝑡(𝑡)
) 

(3) 

Here, N is the number of distinct documents in the corpus and count (t) is 
the number of documents in the corpus in which the term t is present.  

The product of these two metrics i.e. equation (2) and (3) results in a TF-
IDF score of a word in a document. More relevance of a word in a document 
is reflected by its high TF-IDF score. In our system, we modelled the 
resumes and the job description document into a vector space. This is done 
by creating a dictionary of terms present in the documents and converting 
each term to a dimension in the vector space. We then computed the TF-
IDF matrix for the CVs and the job query by using the CountVectorizer and 
the TfidfTransformer python modules. In the next step, we need to 
calculate the similarity score between the resumes and the job description. 

3.2.3 Cosine similarity 

A Similarity measure is a metric that determines how much the two objects 
are alike. Cosine similarity (Sidorov, Grigori, et al., 2014) is a measure to 
find how similar the two documents are regardless of their size. It 
represents the orientation of the documents when plotted on an N-
dimensional space, where each dimension depicts the features of the 
object. It’s a symmetrical algorithm, which implies that the results from 
computing the similarity of item X to item Y is equal to computing the 
similarity of item Y to item X. Mathematically, we can represent it as shown 
below (Sidorov, Grigori, et al., 2014) in equation (4). 

𝑐𝑜𝑠(𝜃) =
𝑎
⇀

. 𝑏
⇀

||𝑎
→

|| ||𝑏
→

||

=
∑ 𝑎𝑖𝑏𝑖

𝑛
𝑖=1

√∑ 𝑎𝑖
2𝑛

𝑖=1
√∑ 𝑏𝑖

2𝑛

𝑖=1

(4) 

Here, 𝐚.
⇀

𝐛
⇀

= ∑ 𝑎𝑖𝑏𝑖
𝑛
1 = 𝑎1𝑏1 + 𝑎2𝑏2+ . . . +𝑎𝑛𝑏𝑛 is the dot product of the 

two vectors. Using this formula, we calculate the cosine similarity between 
all pairs of elements. It can then be used to rank the resume documents 
with respect to a given vector of query words. However, cosine similarity 
focuses on features that are related to the text’s words only and will give 
less accurate results. The efficiency of similarity measures can be 
improved by the inclusion of semantic information. This will constitute the 
future scope for our automated resume screening system. 

4. SYSTEM ARCHITECTURE

The fundamental solution to the problem is building a content-based job 
recommendation system that uses the Vector Space Model (VSM) in 
calculating the similarity between the content of the candidate resumes 
and the job requirements to recommend the best fitting candidates to the 
employer. At a broader level, the basic process of this system is as follows.  

The foremost step is text mining or in other words, information retrieval 
from the unstructured resume documents. The next step is feature 
selection. In this, we identify the main features of the job requirements and 
the candidate profiles (resumes) which will be used for the matching 
process. We then employ the vector space model to represent these 
selected features in an appropriate form by converting both the job 
description and the resume documents as vectors. Finally, we use 
similarity measures like cosine similarity to calculate the ranking of the 
resumes to recommend the top ‘N’ candidates for the given job. This 
process of the system is illustrated in figure 1 given below. 

4.1 Vector Space Model 

After the extraction of relevant keywords from the text corpus, we need to 
transform these terms (part of our created vocabulary) into a numeric 
form that the machine can understand.  

The vectorised form of the text can then be used as input for further 
processing tasks like calculation of text similarities. This task of 
representing each document in the form of vectors is performed using the 
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Vector Space Model. It is simple to use and hence is commonly used in 
information retrieval and content-based recommendation systems. 
 
 
 

 
 

Figure 1: Architecture Diagram of our System 
 
4.2 Candidate Recommendation Process using Vector Space Model 

 

The first step we perform after information retrieval is feature selection 
for each item. In our content based job recommendation system, we build 
the job profile as well as the profile of each of the candidates (resumes) 
that apply for the given job position. We select the most relevant features 
in the candidate resume that are needed for the job and thus create the 
candidate profile. Using the vector space model representation, we can 
write each resume as a vector of n-dimensions where the number of 
dimensions depends on the total textual features from the collection. We 
create fixed-size vectors so that all resumes can be compared on the same 
set of features. 
 
Let 𝑅 =  (𝑅1, 𝑅2, . . . , 𝑅𝑁) and 𝐹 =  (𝑓1, 𝑓2, . . . , 𝑓𝑀) denote a set of 
resumes and the set of features respectively. We can represent each 
Resume Ra as a vector of feature weights, where each weight w ia 
represents the importance of the particular feature Fi for the resume Ra.. 
This is shown below in equation (5). 
 
 

 𝑅𝑎  =  (𝑤1
𝑎 , 𝑤2

𝑎 , . . . . . . . . , 𝑤𝑛
𝑎) (5) 

 
As described in section 3.2.2, our system assigns the feature weights using 
TF-IDF. These are term frequency scores in which a higher score denotes 
that the word is frequent in a particular document but is rare across the 
documents. This representation of feature weights is shown below in 
equation (6). 
 

 𝑤𝑖
𝑎 = 𝑇𝐹 − 𝐼𝐷𝐹 (𝐹𝑖 , 𝑅𝑎)  =  𝑇𝐹 (𝐹𝑖 , 𝑅𝑎)  ∗  𝐼𝐷𝐹 (𝐹𝑖)  

=  𝑇𝐹 (𝐹𝑖 , 𝑅𝑎)  ∗  𝑙𝑜𝑔 (𝑁/𝑁𝑖) 
   
(6) 
 

Here, 𝑇𝐹(𝐹𝑖 , 𝑅𝑎) is the number of occurrences of feature Fi in the content 
of resume Ra, Ni is the number of resumes that contain the feature Fi, and 
N is the total number of resumes.  
 
In a similar manner, we create the job profile from the most important 
requirements given in the job description and hence get the job query 
vectorised document. We have thus created a vector space where each 
point represents an applicant’s resume or the job query.  
 
The next step in this job recommendation system is the similarity 
calculation between each set of resume vectors and job query vectors. The 
cosine similarity between Resume 𝑅𝑎 ,  and job query 𝐽𝑏  when each of them 
is represented in vector space containing ‘n’ features is given by the 
following equation. 
 

  
cos𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑅𝑎 , 𝐽𝑏) =

∑ (𝑤𝑖
𝑎 × 𝑤𝑖

𝑏 )
𝑛

𝑖=1

√∑ (𝑤𝑖
𝑎)2𝑛

𝑖=1
 ×  √∑ (𝑤𝑖

𝑏)2𝑛

𝑖=1

 
(7) 

 

We then rank each resume according to its similarity score with the job 
query. Thereafter, the top-ranked resumes are recommended to the 
employer. 

5. RESULTS 
 

For testing the system, we have used the job description posted by 
Amazon.com Inc. inviting applicants for the job position of a Software 
Developer Engineer at its Bengaluru office. We have taken some relevant 
resume samples from the Internet which we’ll pre-process, perform 
extraction, summarise and then calculate cosine similarity on to create a 
ranked list of candidates for this job. For feature selection, we have 
selected parameters such as Educational Degree, University, Total 
Experience, Designation with the Organisation in which the candidate has 
worked in the past, and most importantly the skills that are needed for the 
job. Figure 2 given below shows the sample output after the information 
extraction from a resume is performed successfully. 
 

 
Figure 2: This image presents the JSON output generated by our system 
after the completion of the information extraction process (phase 1) on a 
sample resume 
 
The next phase (phase 2) of our system involves vectorization and 
similarity calculation. The results of the calculated cosine similarity 
measure between each of the four resumes and the job query is as follows: 
 
 cossimilarity(resume1, jobquery, similarity_matrix)= 
0.4907052756267933 
 cossimilarity(resume2, jobquery, similarity_matrix)= 
0.6802823482591744 
 cossimilarity(resume3, jobquery, similarity_matrix)= 
0.49850131321205904 
 cossimilarity(resume4, jobquery, similarity_matrix)= 
0.6514716047844277 
 
The table below presents the ranked list of candidates according to the 
calculated cosine similarity values. 
 

Table 1: Resultant ranked list of candidates prioritized by similarity 
score 

Candidate Number 
(Resumes) 

Cosine Similarity Score Rank for 
the Job 

Candidate 2 0.6802823482591744 1st 
Candidate 4 0.6514716047844277 2nd 
Candidate 3 0.49850131321205904 3rd 
Candidate 1 0.4907052756267933 4th 

 
Based on the results, we can see candidate 2 best fits the job posting 
followed by candidate 4. The candidates 3 and 1 are the least appropriate 
candidates in this sample.  
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6. CONCLUSION 
 

In this paper, we presented an automated resume screening system that 
simplifies the e-recruitment process by eliminating the various problems 
faced by the recruiters as they relied on manual shortlisting of applicants 
for a given job position. Our system works on two fronts. Firstly, it uses 
Natural Language Processing to extract relevant information from the 
unstructured and wide-ranging formats of the resumes. It creates a 
summarised version of each resume which has only the entities that are 
pertinent to the selection process. With all the insignificant information 
removed, the task of the screening officials is simplified, and they can 
better analyse each resume with better efficiency. On the other front, our 
system provides the provision of ranking the applicants by using a 
content-based recommendation that uses the Vector Space Model and 
similarity to match the extracted resume features with the requirements 
in the job description. It calculates the similarity score value for each 
resume and thus creates a ranked list of top-N recommended candidates 
that best fit the particular job opening. 
 

7. FUTURE WORK 
 

Future work for this system includes mining social networking data (e.g. 
Facebook, LinkedIn, GitHub profiles) of the candidates and utilising this 
social behaviour information in combination with resume content to make 
even more improved recommendations. Another possibility is using a 
collaborative filtering based approach that can match the current 
applicant with a job according to how well other similar candidates 
(neighbours) are rated for it. Another scope of future work lies in the use 
of Latent Semantic Analysis (Berry, M., 2001) in the calculation of semantic 
similarity between the documents and then comparing it with the results 
of the term frequency based similarity approach. 
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