
Topics in Intelligent Computing and Industry Design (ICID) 2(2) (2020) 99-103

Quick Response Code Access this article online

Website:

www.intelcomp-design.com

DOI:

10.26480/etit.02.2020.99.103

Cite The Article: Chirag Daryani, Gurneet Singh Chhabra, Harsh Patel, Indrajeet Kaur Chhabra, Ruchi Patel(2020).An Automated Resume Screening System Using
Natural Language Processing And Similarity. Topics In Intelligent Computing And Industry Design, 2(2): 99 -103.

ISBN: 978-1-948012-17-1

Ethics and Information Technology (ETIT)

DOI: http://doi.org/10.26480/etit.02.2020.99.103

AN AUTOMATED RESUME SCREENING SYSTEM USING NATURAL LANGUAGE

PROCESSING AND SIMILARITY
Chirag Daryania, Gurneet Singh Chhabrab, Harsh Patelc, Indrajeet Kaur Chhabrad, Ruchi Patele

a,b Department of Computer Science and Engineering, Medi-Caps University, Indore 453331, India
d,e Department of Computer Science and Engineering, Medi-Caps University, Indore 453331, India
*Corresponding Author Email: aldousbarrett2276@gmail.com

This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

ARTICLE DETAILS ABSTRACT

Article History:

Received 25 October 2020
Accepted 26 November 2020
Available online 03 December 2020

A typical job posting on the Internet receives a massive number of applications within a short window of
time. Manually filtering out the resumes is not practically possible as it takes a lot of time and incurs huge
costs that the hiring companies cannot afford to bear. In addition, this process of screening resumes is not
fair as many suitable profiles don’t get enough consideration which they deserve. This may result in missing
out on the right candidates or selection of unsuitable applicants for the job. In this paper, we describe a
solution that aims to solve these issues by automatically suggesting the most appropriate candidates
according to the given job description. Our system uses Natural Language Processing to extract relevant
information like skills, education, experience, etc. from the unstructured resumes and hence creates a
summarised form of each application. With all the irrelevant information removed, the task of screening is
simplified and recruiters are able to better analyse each resume in less time. After this text mining process is
completed, the proposed solution employs a vectorisation model and uses cosine similarity to match each
resume with the job description. The calculated ranking scores can then be utilised to determine best-fitting
candidates for that particular job opening.

KEYWORDS

Information Retrieval, Natural Language Processing, Resume Parser, Resume Analyzer, Resume
Summarisation, Ranking Candidates, e-recruitment, Cosine Similarity, Content-based Recommendation,
Vector Space Model.

1. INTRODUCTION

With the rapid increase in internet connectivity, there has been a change
in the recruitment process of all major companies. With the help of online
job postings in various job portals and websites, recruiters are able to
attract a wide variety of people for their openings. Though e-recruitment
has provided convenience and savings for both the recruiters and the
applicants, some new challenges arise. Large companies and recruitment
agencies often receive thousands of resumes every day. This situation is
even more aggravated due to the higher mobility of workers and in
situations of economic distress, where many people are looking to get jobs.
With less than 5% of people to be selected from these applications, it is
impractical for the recruiters to manually go through each and every
resume for these limited number of openings. Another problem faced by
the organisations is that there is no one standard resume format used by
these applicants. People come from varied fields of profession and have
different backgrounds. Each one of them has had different types of
education, has worked on different projects and thus has a unique style of
presenting his/her credentials in the resume. Resumes are unstructured
documents that come in various file formats (.pdf, .doc, .docx, .jpg, .txt etc.)
and their content is not written according to standard formats or
templates. This means reading resumes is not simple and thus recruiters
spend a large amount of time going through the resumes for selecting the
right candidates. Many job portals and external websites came up to
reduce this difficulty of handling unstructured and diverse resumes. These

require candidates to manually fill up all the information of their resume
in an online form in a structured manner, thus creating a candidate
metadata. The problem with this approach is that it requires redundant
efforts on the part of the candidates, and they often miss out on filling
complete information in these templates. These websites use a generic
format that isn't domain-specific and thus is not optimal for all jobs. The
employers then use these templates to apply the keyword-based search
for shortlisting candidates. This keyword-based search functionality is
insufficient to match candidates with the job description (Malinowski,
Jochen, et al., 2006). This is so as it relies only on the existence of certain
required keywords and has various extraction limitations like avoiding
natural language semantics such as synonyms, word combinations, and
contextual meaning of the content present in the resume (Singh, Amit, et
al., 2010). Therefore, these Boolean search methods often give irrelevant
results and deserving candidates miss out on opportunities of being
shortlisted.

In order to get better results for the resume shortlisting, it is necessary to
investigate more efficient approaches to candidate and job description
matching. Our proposed solution will choose the best fitting candidates for
a specific opportunity by relating the main features of the applicants’
profile with the requirements defined in the job description. The system
works in two main phases. In the first phase, all relevant candidate
information like skills, work experience, years of education, certifications,
etc. is extracted from the unstructured text in the resumes. The system

This paper was presented at

International Conference on Contemporary Issues in
Computing (ICCIC-2020) - Virtual

IETE Sector V, Salt Lake, Kolkata
From 25th-26th July 2020

mailto:aldousbarrett2276@gmail.com

Topics in Intelligent Computing and Industry Design (ICID) 2(2) (2020) 99-103

Cite The Article: Chirag Daryani, Gurneet Singh Chhabra, Harsh Patel, Indrajeet Kaur Chhabra, Ruchi Patel(2020).An Automated Resume Screening System Using
Natural Language Processing And Similarity. Topics In Intelligent Computing And Industry Design, 2(2): 99 -103.

uses Natural Language Processing to parse these relevant qualification
details and then creates a summarised version of each resume (Allahyari,
Mehdi, et al., 2017) irrespective of the order of content or the file format.
With all the extraneous and irrelevant details removed, it becomes easy
for the evaluator as he can quickly look at the summarised form and
analyse the credentials of the candidates. The second phase of our system
involves ranking the resumes based on the similarity of their content with
the given job description. The documents are represented as vectors using
Vector Space Model (Arguello and Jaime, 2013) and then similarity
measures like cosine similarity (Huang and Anna, 2008) are used to
measure which set of resumes are the best fitting for the particular job. In
the end, a ranked list of applicants is obtained.

This paper is organised in the following sections: Section 2 describes the
related work which has been done in this field. Section 3 introduces the
detailed methodology and the theoretical concepts involved with our
solution. Section 4 provides an insight into the system architecture we
have developed. Section 5 represents the results of the experiment
performed using our system and Section 6 concludes our work followed
by the future scope in Section 7.

2. RELATED WORK

The recruitment process in today’s world has witnessed a major change
with the evolution of technologies like the Internet. The following section
summarises some of the literary work performed in this domain of e-
recruitment systems. The proposed solutions use various approaches with
the aim of achieving automated screening of candidates. The work
presented as EXPERT (Kumaran, V.S. and Sankar, A., 2013) proposed the
use of ontology mapping for screening candidates for the given job
description. It included three phases of operation which were the creation
of candidate ontology, construction of job criteria ontology document and
then finally mapping of both of these to evaluate which candidates are
eligible for the job. In 2012, an automated job screening system was
proposed (Faliagka, Ramantas, Tsakalidis, and Tzimas). It discusses
different machine learning algorithms and uses Support Vector
Regression to create a list of ranked candidates for the given job. Another
work presented (Weathington and Bechtel, 2012) that described how
social media (e.g. LinkedIn, Facebook, etc.) information of the applicants
can be used for recruitment decisions. In another approach, the work that
was proposed (Laumer, S. and Eckhardt, A., 2009) described a
collaborative filtering based system to recommend applicants that best fit
a job. We also studied a work (Malinowski, Weitzel, and Keim, 2008) that
considered matching interpersonal compatibility of the team members
with the prospective hire to make recruitment decisions. Our work takes
a different approach as it focuses mainly on the content of the resumes
where we perform the extraction of skills and related parameters to match
candidates with the job descriptions.

3. METHODOLOGY

In this section, we describe the concepts that facilitate the construction of
the proposed Automated Resume Screening System. The system works in
two phases as described below.

3.1 Information extraction

The first phase of our proposed system involves information extraction
using Natural Language Processing. The information in the resumes is not
present in a structured format. There are noises, inconsistencies and
irrelevant bits of data which is of no use to the recruiters. The objective is
to derive relevant keywords from the unstructured textual data in the
resume without any need of human crawling efforts. Using techniques like
Tokenization, Stemming, POS Tagging, Named Entity Recognition, etc., our
system obtains important job-related content (skills, experience,
education, etc.) from the uploaded candidate resumes. The result is a
summarised version of each resume in a JSON format which can be easily
used for further processing tasks in the next phase of this resume
screening system.

3.1.1 Tokenization

After converting the various resume formats (.docx, .pdf, .jpg, .rtf, etc.) into
text, we begin the tokenization process to identify terms or words that
form up a character sequence. This is important as through these words,
we will be able to derive meaning from the original text sequence.
Tokenization involves dividing big chunks of text into smaller parts called
tokens. This is done by removing or isolating characters like whitespaces
and punctuation characters. Tokens are sentences initially (when
tokenized out of paragraphs) and then are further split into individual

words. By performing Tokenization, we can derive information like the
number of words in a text, frequency of a particular word in the text and
much more. The tokenization can be performed in multiple ways such as
using Natural Language Toolkit [NLTK], the spaCy library, etc.
Tokenization is a mandatory step for further text processing such as
removal of stop words, stemming and lemmatization.

3.1.2 Stemming and lemmatization

It is frequently seen that a single word of the English language is used in
various different forms in different sentences according to its grammatical
rules. For example -implement, implemented and implementing are just
different tenses of the same verb. This situation results in the need to
reduce all the altered or derived forms of a word to their central stem or
base so that these derivationally related words with similar meanings are
not considered to be different from each other. Both Stemming and
lemmatization have the same objective but differ in their approach.

“Stemming is the mechanism of reducing inflected or derived words to
their word root, or stem. It is a crude heuristic process that involves
chopping off the ends of words to achieve this objective, and often includes
the removal of derivational affixes” (Jivani, A.G., 2011). These are rule-
based algorithms in which a particular word is tested on a range of
conditions and then based on a list of known suffixes, decides how to cut
it down. It is noteworthy that the root derived after stemming may not be
identical to the morphological root of the word. Due to the heuristic-based
approach of stemming, it suffers from issues such as under-stemming and
over-stemming. Some common stemming algorithms used are Porter-
Stemmer, Snowball stemmer, and Lancaster stemmer. On the other hand,
lemmatization is the process of utilising a language dictionary to perform
an accurate reduction to root words. Unlike Stemming which simply cuts
off tokens by simple pattern matching, lemmatization is a more careful
approach that uses language vocabulary and morphological analysis of
words to give linguistically correct lemmas. This means lemmatization
utilises the knowledge of context and therefore can differentiate between
words that have different meanings based on parts of speech. For the
English language, our system uses the WordNet Lemmatizer (based on
WordNew Database) provided by the NLTK python package.

3.1.3 Parts of speech (POS) tagging

It is a process of assigning grammatical information to a word based on its
context and its relationship with other words in the sentence (Gelbukh,
2014). The part-of-speech tag specifies whether the word is a noun,
pronoun, verb, adjective, etc. according to its usage in the sentence. It is
important to assign these tags so as to understand the correct meaning of
a sentence and for building knowledge graphs for named entity
recognition. This process is not as simple as mapping a word to their
corresponding part of speech tags. This is so as a particular word may have
a different part of speech based on different contexts in which it is used.
For example: In the sentence “I am building a software”, building is a Verb,
but in the sentence “I work in the tallest building of that street”, building
is a Noun. Also called grammatical tagging or word-category
disambiguation, it is a supervised learning solution that analyses the
features such as the preceding word, following word, first letter
capitalized or not, etc. to label the words after tokenization. Rule-Based
POS tagging, Stochastic POS tagging, and Transformation based tagging
are mostly used (Hasan, 2006).

3.1.4 Chunking

Chunking is a process that aims to add more structure to sentences by
grouping short phrases with parts of speech tags. Because parts of speech
tags alone cannot give information about the structure of the sentence or
the actual meaning of the text, chunking combines parts of speech tags
with regular expressions to give a result as a set of chunk tags like Noun
Phrase (NP), Verb Phrase (VP), etc. Also called Shallow Parsing, it involves
the construction of a parse tree that can have a maximum one level of
information from roots to leaves. This ensures there is more information
than just part of speech of the word without needing to create a full parse
tree. Chunking segments and labels multi-token sequences (Bird, Klein
and Loper, 2009), mostly making groups of “noun phrases” that are used
for finding named entities.

3.1.5 Named entity recognition

Named Entity Recognition is an information extraction technique which
extracts relevant information by classifying chunks of unorganized text
into predefined categories like names of persons, companies, contact info,
educational credentials, and skills. After classifying the unstructured
resume data into such different sets of categories, our aim is to use a

Topics in Intelligent Computing and Industry Design (ICID) 2(2) (2020) 99-103

Cite The Article: Chirag Daryani, Gurneet Singh Chhabra, Harsh Patel, Indrajeet Kaur Chhabra, Ruchi Patel(2020).An Automated Resume Screening System Using
Natural Language Processing And Similarity. Topics In Intelligent Computing And Industry Design, 2(2): 99 -103.

similarity model to determine the similarity between the categorized
resume data and the requirements provided by the recruiters. There are
many approaches to implement the Named Entity Recognition (Mansouri,
A., Affendey, L.S. and Mamat, A., 2008) in order to derive relevant
categories from unstructured data. These include the Rule-Based
approach in which we define our own algorithms according to the
required domain. We can also use regular expressions, which finds
patterns in a string to detect the named entities. Another approach is using
Bidirectional-LSTM with the Conditional Random Field algorithm for
named entity recognition as a sequence labelling problem (Huang, Z., Xu,
W. and Yu, K., 2015).

We have used the spaCy module which consists of various pre-trained
models that can recognize a number of default entities from the content of
the documents. These models use language information to detect these
entities. We also trained the model on a large annotated set of resume
samples for better accuracy in the entity recognition. We could detect
entities like name, phone number, email, educational institute,
organisation etc. from the resumes as shown in figure 2.

3.2 Content based candidate recommendation

The second phase of our proposed system aims to build a content-based
recommendation system (Guo, X., Jerbi, H. and O'Mahony, M.P., 2014) that
utilises the extracted entities from phase 1 to recommend the most
appropriate resumes for the given job description. The system employs
concepts like Vectorisation (Salton, G., Wong, A. and Yang, C.S., 1975),
importance or weight assigning techniques like TF-IDF (Jabri, Siham, et al.,
2018) and similarity measures like cosine distance (Huang and Anna,
2008) for calculating the similarity among the contents of the documents.

3.2.1 Vectorization

Vector space is a geometric structure formed by a set of elements called
vectors. These can be added together and can be multiplied (“scaled”) by
certain numbers, called scalars in this context. It is an algebraic model for
representing text information for Information Retrieval, Natural Language
Processing and Text Mining. Representing documents in a vector space
model is called vectorisation. It is the process of turning a document into
a numerical vector. An important reason behind performing vectorisation
is that most machine learning models require the input to be numerical
vectors rather than strings. A common way of vectorising text is to map
every possible word to a specific integer. If we have a large array then
every word fits into a unique slot in the array. The value at that index is
the number of times the word occurs. Generally, our array size is less than
the corpus vocabulary. We should thus have a vectorisation strategy to
account for this.

3.2.2 TF-IDF

TF-IDF stands for “Term Frequency – Inverse Document Frequency”
(Stecanella, 2020). The TF-IDF weight is often used in text mining
techniques. TF-IDF was invented for information retrieval and document
search. This weight is a numerical measure to determine how important a
term is with respect to a document in a collection or corpus. The
importance increases proportionally to the frequency of a word within the
document but is offset by the number of documents that contain the word.
So, terms that are frequently used in every document, such as this, and,
what, whom, is, the, if, etc. rank low even though they may appear many
times since they don’t mean much to that document in particular
(Stecanella, 2020). The TF-IDF value for a term in a document is calculated
by multiplying two different metrics (Stecanella, 2020) as shown in
equation (1) below.

𝑇𝐹 − 𝐼𝐷𝐹 (𝑡, 𝑑) = 𝑇𝐹 (𝑡, 𝑑) ∗ 𝐼𝐷𝐹 (𝑡, 𝑑) (1)
 Term Frequency: It measures how frequently a word occurs in each
document in the corpus. Since a word may occur more number of times in
lengthy documents than shorter ones, so you need to adjust or normalize
this frequency. A normalized term frequency is calculated by dividing the
number of times a term appears in a document by the total number of
terms in that document. Mathematically, we can write it as (Jabri, Siham,
et al., 2018) shown below in equation (2).

𝑇𝐹 (𝑡, 𝑑) =
𝑓𝑟𝑒𝑞 (𝑡, 𝑑)

∑ 𝑓𝑟𝑒𝑞 (𝑡𝑖, 𝑑)𝑛
𝑖

(2)

Here, freq (t, d) is the count of the instances of the term t in document d,
TF (t, d) is the proportion of the count of term t in document d, and n is the
number of distinct terms in document d.

 Inverse Document Frequency: It measures how important a word is for
all documents in the corpus. In other words, this metric helps to know how
rare or common a word is across in the corpus. It weighs down the terms
that occur more often while scaling up the rare terms. The terms that
appear more often in the set of documents have IDF value close to 0 while
the rare terms have a high IDF. It is calculated by dividing the total number
of documents by the number of documents that contain a term and then
calculating the logarithm (Stecanella, 2020). Mathematically, we can write
it as shown below in equation (3).

𝐼𝐷𝐹(𝑡) = 𝑙𝑜𝑔 (
𝑁

𝑐𝑜𝑢𝑛𝑡(𝑡)
)

(3)

Here, N is the number of distinct documents in the corpus and count (t) is
the number of documents in the corpus in which the term t is present.

The product of these two metrics i.e. equation (2) and (3) results in a TF-
IDF score of a word in a document. More relevance of a word in a document
is reflected by its high TF-IDF score. In our system, we modelled the
resumes and the job description document into a vector space. This is done
by creating a dictionary of terms present in the documents and converting
each term to a dimension in the vector space. We then computed the TF-
IDF matrix for the CVs and the job query by using the CountVectorizer and
the TfidfTransformer python modules. In the next step, we need to
calculate the similarity score between the resumes and the job description.

3.2.3 Cosine similarity

A Similarity measure is a metric that determines how much the two objects
are alike. Cosine similarity (Sidorov, Grigori, et al., 2014) is a measure to
find how similar the two documents are regardless of their size. It
represents the orientation of the documents when plotted on an N-
dimensional space, where each dimension depicts the features of the
object. It’s a symmetrical algorithm, which implies that the results from
computing the similarity of item X to item Y is equal to computing the
similarity of item Y to item X. Mathematically, we can represent it as shown
below (Sidorov, Grigori, et al., 2014) in equation (4).

𝑐𝑜𝑠(𝜃) =
𝑎
⇀

. 𝑏
⇀

||𝑎
→

|| ||𝑏
→

||

=
∑ 𝑎𝑖𝑏𝑖

𝑛
𝑖=1

√∑ 𝑎𝑖
2𝑛

𝑖=1
√∑ 𝑏𝑖

2𝑛

𝑖=1

(4)

Here, 𝐚.
⇀

𝐛
⇀

= ∑ 𝑎𝑖𝑏𝑖
𝑛
1 = 𝑎1𝑏1 + 𝑎2𝑏2+ . . . +𝑎𝑛𝑏𝑛 is the dot product of the

two vectors. Using this formula, we calculate the cosine similarity between
all pairs of elements. It can then be used to rank the resume documents
with respect to a given vector of query words. However, cosine similarity
focuses on features that are related to the text’s words only and will give
less accurate results. The efficiency of similarity measures can be
improved by the inclusion of semantic information. This will constitute the
future scope for our automated resume screening system.

4. SYSTEM ARCHITECTURE

The fundamental solution to the problem is building a content-based job
recommendation system that uses the Vector Space Model (VSM) in
calculating the similarity between the content of the candidate resumes
and the job requirements to recommend the best fitting candidates to the
employer. At a broader level, the basic process of this system is as follows.

The foremost step is text mining or in other words, information retrieval
from the unstructured resume documents. The next step is feature
selection. In this, we identify the main features of the job requirements and
the candidate profiles (resumes) which will be used for the matching
process. We then employ the vector space model to represent these
selected features in an appropriate form by converting both the job
description and the resume documents as vectors. Finally, we use
similarity measures like cosine similarity to calculate the ranking of the
resumes to recommend the top ‘N’ candidates for the given job. This
process of the system is illustrated in figure 1 given below.

4.1 Vector Space Model

After the extraction of relevant keywords from the text corpus, we need to
transform these terms (part of our created vocabulary) into a numeric
form that the machine can understand.

The vectorised form of the text can then be used as input for further
processing tasks like calculation of text similarities. This task of
representing each document in the form of vectors is performed using the

Topics in Intelligent Computing and Industry Design (ICID) 2(2) (2020) 99-103

Cite The Article: Chirag Daryani, Gurneet Singh Chhabra, Harsh Patel, Indrajeet Kaur Chhabra, Ruchi Patel(2020).An Automated Resume Screening System Using

Natural Language Processing And Similarity. Topics In Intelligent Computing And Industry Design, 2(2): 99 -103.

Vector Space Model. It is simple to use and hence is commonly used in
information retrieval and content-based recommendation systems.

Figure 1: Architecture Diagram of our System

4.2 Candidate Recommendation Process using Vector Space Model

The first step we perform after information retrieval is feature selection
for each item. In our content based job recommendation system, we build
the job profile as well as the profile of each of the candidates (resumes)
that apply for the given job position. We select the most relevant features
in the candidate resume that are needed for the job and thus create the
candidate profile. Using the vector space model representation, we can
write each resume as a vector of n-dimensions where the number of
dimensions depends on the total textual features from the collection. We
create fixed-size vectors so that all resumes can be compared on the same
set of features.

Let 𝑅 = (𝑅1, 𝑅2, . . . , 𝑅𝑁) and 𝐹 = (𝑓1, 𝑓2, . . . , 𝑓𝑀) denote a set of
resumes and the set of features respectively. We can represent each
Resume Ra as a vector of feature weights, where each weight w ia
represents the importance of the particular feature Fi for the resume Ra..
This is shown below in equation (5).

 𝑅𝑎 = (𝑤1
𝑎 , 𝑤2

𝑎 , , 𝑤𝑛
𝑎) (5)

As described in section 3.2.2, our system assigns the feature weights using
TF-IDF. These are term frequency scores in which a higher score denotes
that the word is frequent in a particular document but is rare across the
documents. This representation of feature weights is shown below in
equation (6).

 𝑤𝑖
𝑎 = 𝑇𝐹 − 𝐼𝐷𝐹 (𝐹𝑖 , 𝑅𝑎) = 𝑇𝐹 (𝐹𝑖 , 𝑅𝑎) ∗ 𝐼𝐷𝐹 (𝐹𝑖)

= 𝑇𝐹 (𝐹𝑖 , 𝑅𝑎) ∗ 𝑙𝑜𝑔 (𝑁/𝑁𝑖)

(6)

Here, 𝑇𝐹(𝐹𝑖 , 𝑅𝑎) is the number of occurrences of feature Fi in the content
of resume Ra, Ni is the number of resumes that contain the feature Fi, and
N is the total number of resumes.

In a similar manner, we create the job profile from the most important
requirements given in the job description and hence get the job query
vectorised document. We have thus created a vector space where each
point represents an applicant’s resume or the job query.

The next step in this job recommendation system is the similarity
calculation between each set of resume vectors and job query vectors. The
cosine similarity between Resume 𝑅𝑎 , and job query 𝐽𝑏 when each of them
is represented in vector space containing ‘n’ features is given by the
following equation.

cos𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑅𝑎 , 𝐽𝑏) =

∑ (𝑤𝑖
𝑎 × 𝑤𝑖

𝑏)
𝑛

𝑖=1

√∑ (𝑤𝑖
𝑎)2𝑛

𝑖=1
 × √∑ (𝑤𝑖

𝑏)2𝑛

𝑖=1

(7)

We then rank each resume according to its similarity score with the job
query. Thereafter, the top-ranked resumes are recommended to the
employer.

5. RESULTS

For testing the system, we have used the job description posted by
Amazon.com Inc. inviting applicants for the job position of a Software
Developer Engineer at its Bengaluru office. We have taken some relevant
resume samples from the Internet which we’ll pre-process, perform
extraction, summarise and then calculate cosine similarity on to create a
ranked list of candidates for this job. For feature selection, we have
selected parameters such as Educational Degree, University, Total
Experience, Designation with the Organisation in which the candidate has
worked in the past, and most importantly the skills that are needed for the
job. Figure 2 given below shows the sample output after the information
extraction from a resume is performed successfully.

Figure 2: This image presents the JSON output generated by our system
after the completion of the information extraction process (phase 1) on a
sample resume

The next phase (phase 2) of our system involves vectorization and
similarity calculation. The results of the calculated cosine similarity
measure between each of the four resumes and the job query is as follows:

 cossimilarity(resume1, jobquery, similarity_matrix)=
0.4907052756267933
 cossimilarity(resume2, jobquery, similarity_matrix)=
0.6802823482591744
 cossimilarity(resume3, jobquery, similarity_matrix)=
0.49850131321205904
 cossimilarity(resume4, jobquery, similarity_matrix)=
0.6514716047844277

The table below presents the ranked list of candidates according to the
calculated cosine similarity values.

Table 1: Resultant ranked list of candidates prioritized by similarity
score

Candidate Number
(Resumes)

Cosine Similarity Score Rank for
the Job

Candidate 2 0.6802823482591744 1st
Candidate 4 0.6514716047844277 2nd
Candidate 3 0.49850131321205904 3rd
Candidate 1 0.4907052756267933 4th

Based on the results, we can see candidate 2 best fits the job posting
followed by candidate 4. The candidates 3 and 1 are the least appropriate
candidates in this sample.

Topics in Intelligent Computing and Industry Design (ICID) 2(2) (2020) 99-103

Cite The Article: Chirag Daryani, Gurneet Singh Chhabra, Harsh Patel, Indrajeet Kaur Chhabra, Ruchi Patel(2020).An Automated Resume Screening System Using

Natural Language Processing And Similarity. Topics In Intelligent Computing And Industry Design, 2(2): 99 -103.

6. CONCLUSION

In this paper, we presented an automated resume screening system that
simplifies the e-recruitment process by eliminating the various problems
faced by the recruiters as they relied on manual shortlisting of applicants
for a given job position. Our system works on two fronts. Firstly, it uses
Natural Language Processing to extract relevant information from the
unstructured and wide-ranging formats of the resumes. It creates a
summarised version of each resume which has only the entities that are
pertinent to the selection process. With all the insignificant information
removed, the task of the screening officials is simplified, and they can
better analyse each resume with better efficiency. On the other front, our
system provides the provision of ranking the applicants by using a
content-based recommendation that uses the Vector Space Model and
similarity to match the extracted resume features with the requirements
in the job description. It calculates the similarity score value for each
resume and thus creates a ranked list of top-N recommended candidates
that best fit the particular job opening.

7. FUTURE WORK

Future work for this system includes mining social networking data (e.g.
Facebook, LinkedIn, GitHub profiles) of the candidates and utilising this
social behaviour information in combination with resume content to make
even more improved recommendations. Another possibility is using a
collaborative filtering based approach that can match the current
applicant with a job according to how well other similar candidates
(neighbours) are rated for it. Another scope of future work lies in the use
of Latent Semantic Analysis (Berry, M., 2001) in the calculation of semantic
similarity between the documents and then comparing it with the results
of the term frequency based similarity approach.

ACKNOWLEDGEMENTS

This research was supported by Medi-Caps University, Indore. We would
like to sincerely thank Prof. Indrajeet Kaur Chhabra, our guide, for her
constant support and guidance. We are also grateful to Prof. Ruchi Patel
for comments that greatly improved the manuscripts. We would also like
to thank all anonymous reviewers for their valuable feedback.

REFERENCES

Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E.D., Gutierrez, J.B.
and Kochut, K., 2017. A brief survey of text mining: Classification,
clustering and extraction techniques. arXiv preprint
arXiv:1707.02919.

Arguello, J., 2013. Vector space model. Information Retrieval September,

25.

Berry, M., 2001. Computational Information Retrieval. Philadelphia:

Society for Industrial and Applied Mathematics,121-144.

Bird, S., Klein, E. and Loper, E., 2009. Natural Language Processing With

Python. Bejing: O'Reilly, 264.

Faliagka, E., Ramantas, K., Tsakalidis, A. and Tzimas, G., 2012, May.

Application of machine learning algorithms to an online recruitment
system. In Proc. International Conference on Internet and Web
Applications and Services.

Gelbukh, A., 2014. Computational Linguistics And Intelligent Text

Processing. Berlin, Heidelberg: Springer Berlin Heidelberg.

Guo, X., Jerbi, H. and O'Mahony, M.P., 2014, September. An analysis

framework for content-based job recommendation. In 22nd

International Conference on Case-Based Reasoning (ICCBR), Cork,
Ireland, 29 September-01 October 2014.

Hasan, F.M., 2006. Comparison of different POS tagging techniques for

some South Asian languages (Doctoral dissertation, BRAC University).

Huang, A., 2008, April. Similarity measures for text document clustering.

In Proceedings of the sixth new zealand computer science research
student conference (NZCSRSC2008), Christchurch, New Zealand, 4, 9-
56.

Huang, Z., Xu, W. and Yu, K., 2015. Bidirectional LSTM-CRF models for

sequence tagging. arXiv preprint arXiv:1508.01991.

Jabri, S., Dahbi, A., Gadi, T. and Bassir, A., 2018, April. Ranking of text

documents using TF-IDF weighting and association rules mining. In
2018 4th International Conference on Optimization and Applications
(ICOA), 1-6. IEEE.

Jivani, A.G., 2011. A comparative study of stemming algorithms. Int. J.

Comp. Tech. Appl, 2(6), 1930-1938.

Kumaran, V.S. and Sankar, A., 2013. Towards an automated system for

intelligent screening of candidates for recruitment using ontology
mapping (EXPERT). International Journal of Metadata, Semantics and
Ontologies, 8(1), 56-64.

Laumer, S. and Eckhardt, A., 2009, May. Help to find the needle in a

haystack: integrating recommender systems in an IT supported staff
recruitment system. In Proceedings of the special interest group on
management information system's 47th annual conference on
Computer personnel research, 7-12.

Malinowski, J., Keim, T., Wendt, O. and Weitzel, T., 2006, January. Matching

people and jobs: A bilateral recommendation approach. In
Proceedings of the 39th Annual Hawaii International Conference on
System Sciences (HICSS'06), 6, 137c-137c. IEEE.

Malinowski, J., Weitzel, T. and Keim, T., 2008. Decision support for team

staffing: An automated relational recommendation approach. Decision
Support Systems, 45(3),429-447.

Mansouri, A., Affendey, L.S. and Mamat, A., 2008. Named entity recognition

approaches. International Journal of Computer Science and Network
Security, 8(2), 339-344.

Salton, G., Wong, A. and Yang, C.S., 1975. A vector space model for

automatic indexing. Communications of the ACM, 18(11),613-620.

Sidorov, G., Gelbukh, A., Gómez-Adorno, H. and Pinto, D., 2014. Soft

similarity and soft cosine measure: Similarity of features in vector
space model. Computación y Sistemas, 18(3),491-504.

Singh, A., Rose, C., Visweswariah, K., Chenthamarakshan, V. and

Kambhatla, N., 2010, October. PROSPECT: a system for screening
candidates for recruitment. In Proceedings of the 19th ACM
international conference on Information and knowledge management,
659-668.

Stecanella, B., 2020. What Is TF-IDF?. [online] MonkeyLearn Blog.

Available at: <https://monkeylearn.com/blog/what-is-tf-idf/>.

Weathington, B.L. and Bechtel, A.R., 2012. Alternative Sources of

Information and the Selection Decision Making Process. Journal of
Behavioral & Applied Management, 13(2).

